

Sit With Us
Software Design Specifications

Will Crain, David Glenn, Ryan Mitchell, Hazem Tashkandi

October 31st, 2017

CHANGE HISTORY
Date Version Description Author

September 19, 2017 0.01 Initial list of Functional and Nonfunctional
Requirements

Team

September 21, 2017 0.02 Initial Use Case Diagrams published Team

September 26, 2017 0.03 Revised Use Case Diagrams, start of
Activity Diagrams

Team

September 28, 2017 0.04 Added more Activity Diagrams, Use Case
Diagrams revised

Team

October 1, 2017 0.05 Finished draft of Activity Diagrams, began
write up of requirements, including Table
of Contents, Purpose, Glossary, and
Project Description

Team

October 2, 2017 0.06 Continued work on Requirements
document, Activity Diagrams revised,
Class Diagram published. Sorting of
essential parts of program finished.

Will, Ryan

October 3, 2017

0.1 Revising of Activity Diagrams and Use
Case Diagrams, writing of activity diagram
descriptions, writing of use case
descriptions. Finalization of formatting.

Team

October 10, 2017 0.11 Beginning of Design Document Team

October 17, 2017 0.12 Initial Draft of detailed Class Diagram.
Added new terms to glossary.

Team

October 19, 2017 0.13 Further work on Class Diagram. Team

October 23, 2017 0.14 Further work on Class Diagram, draft of
Sequence Diagrams.

David,
Ryan, Will

October 28, 2017 0.16 Addition of Sequence Diagrams Ryan

October 30, 2017 0.17 Addition of Sequence Diagrams Team

October 31, 2017 0.2 Refining Sequence Diagrams and Class
Diagram, fixing of Activity and Use Case
diagrams to match new program layout.

David,
Ryan, Will

1

TABLE OF CONTENTS

CHANGE HISTORY 1

TABLE OF CONTENTS 2

I. INTRODUCTION 5
Glossary 5
Scope 6
Goals 6

II. PROJECT DESCRIPTION 7
Profile Creation 7
Profile Management 7
Meetup Creation 7
Meetup Search 8
Meetup Management 8
Meetup History 8
View Profile 8
Settings Management 9
Developer Management 9

III. REQUIREMENTS 10
Functional Requirements 10

Profile Creation and Management 10
Group Search and Management 10
Settings and Miscellaneous 11
Developer Management 11

Non-Functional Requirements 11

IV. CLASS DIAGRAM 12
App Class Diagram 12
Server Class Diagram 14

V. USE CASE DIAGRAMS 16
Log-In Use Case Diagram 16
Main Screen Use Case Diagram 17
Account Management Use Case Diagram 18
Meetups Main Use Case Diagram 19
Meetup Matching Use Case Diagram 20

2

In A Meetup Use Case Diagram 21

VI. ACTIVITY DIAGRAMS 22
Account Management Activity Diagram 22
Block List Management Activity Diagram 23
Contact Developers Activity Diagram 23
Create Profile Activity Diagram 24
Edit Profile Activity Diagram 25
Meetup Management Activity Diagram 26
Login Activity Diagram 27
Meetup Search Activity Diagram 28
Main Screen Activity Diagram 29
Report User Activity Diagram 30
Server Meetup Search Activity Diagram 31
View Meetup History Activity Diagram 32
View Profile Activity Diagram 33

VII. Sequence Diagrams 34
Create User Diagram (App) 34
Handle Create User Diagram (Server) 35
Handle Verify User Diagram (Server) 36
Login User Diagram (App) 37
Handle Login User Diagram (Server) 38
Handle Verify User Login Diagram (Server) 39
Handle Check Login Verified Diagram (Server) 40
View Profile Diagram (App) 41
Edit Profile Diagram (App) 42
Handle View Profile Diagram (Server) 43
Handle Edit Profile Diagram (Server) 44
View Blocklist Diagram (App) 45
Handle View Blocklist Diagram (Server) 46
Handle Edit Blocklist Diagram (Server) 47
Handle Toggle Friend Status (Server) 48
Handle Get Friends Diagram (Server) 49
Meetup Search Start/Stop/Update (App) 50
Handle Meetup Search Start/Stop (Server) 51
Handle Meetup Search Update (Server) 52
Start Meetup (App) 53
Handle Start/Stop Meetup (Server) 54
Leave Meetup (App) 55

3

View Meetup History (App) 56
Handle Contact Developers Diagram (Server) 57
Contact Developers Diagram (App) 57

Afterword 58

4

I. INTRODUCTION

Purpose

Sit With Us is an Android social networking app that will allow users to spontaneously
meet new people at their current location. The purpose of this app is to make finding new
people to develop temporary or long-lasting friendships with easier. The app will allow people to
form spontaneous meetups and search for other nearby people and meetups to join using GPS.

Glossary
Account: A user’s method of logging in. Account refers to everything the user owns as a result
of our program, including Profile, Friend List, and Block List. Users use their Account to sign into
the application.

Block: An action a user invokes on another user that hides the user’s profile and activity from
the other user.

Block list: A list of other users that a particular user has blocked.

Description: A freeform text field designed to allow users to enter a brief description of
themselves. This will not be used for matching algorithms, but will be displayed to other users
during the matching process to shore up any gaps left by interests.

Developer: A software developer who works on creating the app.

Friend List: The list of contacts in the user’s device that have accounts in this app associated
with their contact number.

Interest: A textual tag corresponding to a hobby, used to match with other users who share
interests.

Meetup: Two or more users currently matched by the app, either through the search function or
through the friends list. Can be closed or open to additional users.

Profile: A page owned by a user containing (a) photo(s), interests, and a text field filled out by
the user.

Server: The device that runs software used to connect users and manage user data.

5

Status: Text set before the user searches for a meetup. This text conveys why a user wants to
meet up, what a user wants to talk about, or what is on the user's’ mind.

User: A person who downloads the app to find other users. User1 refers to the user performing
the action, while User2 refers to a user who receives the result of that action without initiating
the action themselves.

Required: A feature that we deem is necessary to the application’s functionality.

Possible: A feature that we deem is beneficial to the overall structure and functionality of the
application, but not necessary to provide an end product.

Future: A feature that we deem unnecessary, but would be beneficial to the user experience.

Scope
The app will run on the Android platform. The app will utilize the Android framework to develop
and easy-to-use user interface that facilitates meeting new people spontaneously. The app will
use GPS to determine the location of the user and will access the user’s contact list to make it
easy to include their friends in meetups as well as make it easy to save the contact information
of people a user meets.

The project will require a backend server to store user information and to connect users to each
other. The server will have to use user feedback from previous meetups to determine which pair
of users would mostly produce a meetup that goes well.

Goals

The final goal of the application is to have everything mentioned in this requirements document
functioning precisely as intended, with each feature being implemented in an efficient,
easy-to-use way. We hope users will be able to use our application to form lasting friendships,
by finding users similar to themselves.

Our goals with the project are, in descending order of priority, having profiles implemented and
working with ability to view another profile, matching users with profiles, giving the user the
ability to manage their profile after creation, implementing meetups (both the meetup itself and
the ability to provide feedback as a result of the meetup), having a meetup history users can
view, implementing contact list integration, allowing a user to invite contacts to meetups,
implementing GPS integration to allow users to more easily find each other after matching,
implementing a block list, and finally, optimization. Optimization will ideally be performed

6

throughout the course of the application’s development, rather than at the end of the
development cycle.

One stretch goal is to have a working machine-learning based algorithm for matching users in a
more effective way than simply comparing similarity of tags. Since time is limited, it is likely there
will not be enough time to fully teach the algorithm, the goal is to have at the very least a
framework in place that learns behind the scenes and uses user feedback from matching to
train itself. The implementation of this goal is dependent on time and difficulty of the
implementation itself. Another is the implementation of sponsored locations, which are currently
on the roadmap but not a priority feature.

II. PROJECT DESCRIPTION

Profile Creation
Once the app has been downloaded, the user is prompted to create an account or log into an
existing account on the initial screen.

Once the user has chosen their name, username, email, and phone number (which will most
likely be the device they are currently on), the account will be created and the user will be
logged in, assuming that the email and username are both currently available.

Profile Management
The user can edit their account information like their description, profile picture, phone number,
and their interests. The user can also choose to deactivate their account so that it no longer
appears on friend’s lists. It will be reactivated the next time the user logs in.

By default, a user’s “friend’s list” will be their phone contacts. There will be a separate block list
available for people to block users.

Meetup Creation
A possible feature, this would involve a user being able to create a meetup without ever
searching for one, by inviting friends to a meetup beforehand. This would form a meetup that
would then be able to operate as any other meetup, but skips the matching step.

7

Meetup Search
As a possible feature, users can set their status indicating why they would like to meet up with
someone or what they want to talk about before searching for people to meet.

Users and existing meetups can browse for other users and/or currently active meetups who are
also looking for people to join. A user or meetup will receive a list of other users and/or currently
active meetups who are also looking for people to join. From there the user can view the profiles
of the those users and view the current status of those users. A user can toggle all in case they
are willing to match with anyone. The user can also toggle which users the user is willing to join
in a meetup. This toggle occurs when a user swipes right on a profile they would like to match
with.

Once a combination of two user/meetups both toggle that they would like to join the other
user/meetup, the two both receive a notification that the other is willing to join them and asking
them if they would like to stop looking for matches to meet up with the other user/meetup. If both
sides agree to meet up, they are removed from the search pool and form one combined
meetup.

Meetup Management
After creating a meetup, a user can send invites to other users in their friends list to join the
meetup.

When in a meetup, users can send messages to other users in their current meetup. Users in a
meetup can also search for other users/meetups to join. A user can also choose to leave their
current meetup.

Meetup History
The user can view a list of their previous meetups. The user can view the profiles of each user
in that participated in meetup. A potential feature involves the ability to provide feedback on the
meetups or the individual people to aid in finding desireable people from that user to meet.

View Profile
The user can view the profiles of other users. This allows a user to screen potential matches
before toggling if they are willing to meet up with that person. The profile will contain information
including a profile picture, the user’s name, the description of the user, and their interests.

8

A user can also choose to add the user of the profile to their block list to prevent meeting up
with this user again. Additionally, the user can toggle a box that states whether it is okay to
share phone number information with the user or not. If both users agree to share phone
number information, the phone number information is displayed on the profile.

Settings Management
The settings menu allows the user to perform several miscellaneous functions. The user can
deactivate, but not delete, their account. The account would be reactivated if the user attempts
to access the app again. The user can also contact the developers through the settings menu.

Developer Management
The developer screen will be inaccessible to normal users. It will allow users with administrative
privilege to view feedback sent to developers by users in the settings menu.

9

III. REQUIREMENTS

Functional Requirements

Profile Creation and Management
● A user needs to be able to create a profile - Required
● A user needs to be able to manage and modify his or her profile, including

preferences, tags, photos, and interests - Required
● A user needs to be able to suspend his or her account - Possible
● A user needs to be able to disassociate his or her phone number from his or her

account - Possible
● A user needs to be able to manage a Friends List - Required
● A user needs to be able to manage a Block List - Possible

Group Search and Management
● A user needs to be able to search for groups - Required
● A user needs to be able to cancel a search - Required
● The application needs a way to grab the user’s GPS location - Required
● A user needs to be able to select to utilize his or her current location, or a nearby

sponsored location - Future
● A user needs to be able to match groups with a high degree of success -

Required
● A user needs an option to provide group feedback upon leaving a group - Future
● A user needs an option to share contact info - Possible
● A user needs a way to view group history - Possible
● The application needs a method to track a user’s group history - Possible
● A user needs a way to invite friends to an already existing meetup - Possible
● A user needs a way to invite friends to start a meetup - Future
● A user needs a way to promote the matching of certain interests - Future
● A user needs a way to edit his or her status, to provide additional information at

the group searching screen - Future
● A meetup needs the ability to proactively search for new users, rather than

simply taking requests as they come - Possible

10

Settings and Miscellaneous
● A user needs a method of contacting the developers to provide feedback -

Required
● A user needs a way to report other users - Possible
● The application needs fake reporting options, such as “I didn’t like this user”, to

reduce abuse of the report function - Possible
● The application needs to appropriately filter reports to prevent overloading

developers with reports - Possible
● The application needs to properly punish offending users - Possible
● The application needs a database that can hold information about users and

meetups - Required
● The application needs a database local to a phone that stores information about

past meetups - Required
● A user needs a way to change his or her email address or phone number -

Possible

Developer Management
● The developers need a way to view report feedback - Required

Non-Functional Requirements

● The application must remain functional on older/lower-end Android phones -
Possible

● The application must not unnecessarily drain battery - Possible
● The application must perform tasks (such as group searching, matching) in a

reasonable amount of time - Possible
● Meetups and searching should have timeouts - Required
● Friends should be displayed above all other users during matching process -

Required
● Log-in links should only remain active for a limited time - Required
● Log-in links should be device-locked - Required
● Log-in emails should contain device identifying information - Required
● Interaction with the server should only occur when necessary - Possible
● The application’s implementation of meetup history should only show users that

the user was in a group with at some point in the meetup’s existence - Possible

11

IV. CLASS DIAGRAM

App Class Diagram

The diagram shows the interaction, application-side, of our classes, with methods and
attributes. The bridge between the two diagrams is the ServerRequest class, which provides
methods for the various classes to communicate with the server. The CreateAccount class will
contain the methods for a user to create an account, and will utilize ServerRequest to place a
valid account on the server. Profile contains the information about a user saved in their profiles.
Each user will have a single profile, which is linked to, but separate from, accounts. When
viewing another user’s profile, a user will be able to magnify the image, send friend requests,
and block the user. This will utilize server requests to ensure the database is properly updated.
When viewing a user’s own profile, they will be provided with the options outlined in the
EditProfileActivity class. The Searching Service runs in the background when a user begins
searching. It interacts with ServerRequest by making a request every set amount of time
(currently 30 seconds), and is responsible for keeping the user provided with up to date
information about who is searching, as well as pushing information to the server about users
who are currently searching and who have stopped searching. The ContactDevelopers class

12

communicates with the Server to provide feedback to the developers. It places strings in a
database that the developers can look at whenever they choose. MeetupHistory communicates
with the LocalDatabase and the ServerRequest class to place information about a user’s
previous meetups into a database local to the user. It uses ServerRequest to pull information
about a user’s profile when a user is looking at locally stored meetups. A meetup has
information about the user’s inside of it, and is placed on the server along with some other
information about the meetup using the ServerRequest class. The AccountManagement class
provides gateways to edit your profile, as well as to edit your blocklist and view your meetup
history. As mentioned, the majority of these classes rely heavily on server communication, so it
is essential that we design the ServerRequest class in a way that makes it easy to communicate
with the database.

13

Server Class Diagram

This diagram shows the core components of the backend server of the app. The ApiHandler
class listens to requests from the app over HTTP GET and POST connections. Depending on
the directory of the website, the handler will call different methods that will handle the request
and return a JSON response to the app. The UserModel represents an account of a user. This
class handles account creation, logging in, profile editing, profile retrieval, block list editing,
sharing of phone numbers, and retrieval or friends. This class communicates to the email class
when it sends verification emails to users to confirm their credentials. The MeetupModel

14

represents a meetup of users. It stores a record of current users and former users and handles
users starting and leaving meetups. The SearchEntityModel class represents a user or meetup
that is currently looking for other users or meetups to match with. All SearchEntityModels that
are currently in the datastore are meetups and users currently searching. This class handles
starting and stopping of searching as well as handling sending updates to the app regarding
matches. All the models communicate with the database which can be query, inserted into, and
removed from.

15

V. USE CASE DIAGRAMS

Log-In Use Case Diagram

The Log-In Use Case encompasses activities a user can perform before logging into the
application or creating an account. These are limited in scope to creating accounts and
contacting the developers with feedback, as well as signing in. Recovering accounts will be
unnecessary with our method of logging in, and reactivating accounts, if implemented, will occur
automatically upon sign in.

16

Main Screen Use Case Diagram

The Main Screen use case outlines what a user will be doing when on the primary screen of the
application. These cases include searching for a meetup, managing one’s account, contacting
the developers with feedback, and logging out of the application. If time permits, the ability to
edit a user’s status will be available in this use case as well.

17

Account Management Use Case Diagram

The Account Management use case encompasses what a user can do when managing his or
her account. Options include editing one’s profile, editing one’s block list, viewing one’s meetup
history, and deactivating one’s account. Reactivation occurs when a user logs back into their
account, and deactivated accounts are not visible in a friend’s list.

18

Meetups Main Use Case Diagram

The Meetups Main use case encompasses the group/meetup related activities that a user can
perform before or after searching for a meetup, without actually requiring the user to search for
a group or be a part of a group. These are spread across different screens, but encompass the
same general idea. Starting a Meetup with Friends is in this Use Case diagram, but is only a
possible feature, not a required one.

19

Meetup Matching Use Case Diagram

The Meetup Matching use case encompasses the activities a user can do during a search for a
meetup. These are limited to cancelling the searching/matching service, viewing profile of
potential matches, as well as toggling willingness to match with a user or meetup.

20

In A Meetup Use Case Diagram

The In A Meetup Use Case encompasses activities a user can perform whilst in a group. These
are limited to accepting new users, viewing users currently in one’s group, locating these users,
leaving meetups, and inviting friends to the meetup. We hope to implement the ability for
meetups to search for individual users or other meetups, but this is currently a possible feature,
not a required one.

21

VI. ACTIVITY DIAGRAMS

Account Management Activity Diagram

The user can choose to manage their list of blocked users, view their meetup history, edit their
profile information, deactivate their account.

If the user chooses to deactivate their account, a dialog box asks for confirmation of whether the
user is sure they desire to deactivate their account. The user must then type in their password
and the server verifies if that password is correct. If the password is not correct, the user is
prompted again to type in their password. Once the user types in their password correctly, they
are prompted to optionally fill out a reason for deactivation. Next, a deactivation request is sent
to the server, the server processes the deactivation request, and the app receives that the
server processed the request. The user is then logged out of the app.

22

Block List Management Activity Diagram

The user can choose a user to remove from their block list. A confirmation dialog then confirms
if they would like to remove the user from their block list. If the user wants to remove the blocked
user from the block list, the server is notified on this and the blocked user is removed from their
block list. A user will also be able to report a user on his or her block list, without having to first
remove the user from their block list.

Contact Developers Activity Diagram

The user can choose to provide feedback on the app and is prompted to enter their feedback
into a text form. The feedback is sent to the server when the user finishes filling out the form.

23

Create Profile Activity Diagram

The user is prompted for their email address, password, and phone number. The server will
check if the email or phone number is current associated with a user account. If either is
associated with a current user account, the user is informed of this and is allowed to restart
account creation or leave account creation. Otherwise, the user will receive email and phone
confirmation codes that they must input into the app to verify that the email and phone number
provided is their email. The confirmation codes expires in an hour. When the user types in their
confirmation code, the server checks if the codes have been entered within an hour from when it
was created and if the codes are correct. If so, the account is created and the user is sent to the
login screen.

24

Edit Profile Activity Diagram

The user can choose which information they would like to change. For all information besides
phone number, the changes can be made in the app and then the server updates the user
profile. For the phone number, the user enters the desired new phone number and a phone
number change request is sent to the server. The server then texts a verification code to the
new number. The user has three attempts to type in the correct verification code. If the
verification code is correct, the new phone number is sent to the server and the phone number
is changed. Otherwise, the user fails and is taken back to edit profile.

25

Meetup Management Activity Diagram

While in a meetup, the invite users in their friends lists to join the meetup, view profiles of users
in the meetup, and leave the meetup. Users can also locate other users who are in the meet up.
The method used to locate people has not been decided yet. Potential methods are using gps to
create a compass, making the screen glow a certain color that users hold up to find each other,
and allowing people to text each other through the app. The user can also search for other
users to bring into the meetup in the background.

A potential feature is the ability to invite friends to the meetup. A list of the user’s friends comes
up, and the user selects all the people they want invited to the meetup. The server receives this
list and sends invite notifications to the friends. When a friend accepts the request, they are put
into the meetup.

When a user leaves a meetup, if the meetup is now empty, it is closed and finished. The user is
then prompted to send feedback to the server about how the meetup went. This feedback can
be used later on to help sort potential future meetups.

26

Login Activity Diagram

The user can choose to create their account or log into their account. If the user chooses to log
into an account, the user types in their login information and the information is sent to the
server. If the information is valid, the server allows the user to log in and is taken inside the app.
If the information is not valid, the user is prompted to retry entering their information. Creating
an account is covered in the “Create Profile” activity diagram. The user can also choose to exit
the application.

27

Meetup Search Activity Diagram

When searching for a meetup, the user will continuously receive a list of user and meetup
recommendations from the server. The user can toggle which users and/or meetups they are
willing to join. The user will receive match notifications from the server when a different
user/meetup that this user is willing to meetup with also is willing to meetup with this user. If the
user wants to go finalize the match, the user confirms to meetup. If not, the searching continues.
If a user/meetup does not confirm to meetup, then a decline messages is sent to the other user.
The user can also choose to stop searching so they will no longer match with other users. A
potential feature is the ability for users to invite friends during this stage, to start their own
meetup. Users will send out invites to contacts, and then go back into the normal meetup
searching. When a contact accepts, the user will be pulled from wherever they are in the activity
and placed into the “Meetup Management” activity, along with their invited contact.

28

Main Screen Activity Diagram

From the main screen, the user can choose to start searching for a meetup, manage their
account, contact the developers, or log out. A potential feature is the ability to edit a user’s
status, should statuses be implemented.

29

Report User Activity Diagram

A potential feature is the ability to report a user. To report a user for abuse of the app, the user
selects the “report user” option from the other user’s profile. The possible options for reporting
include for misconduct such as hateful speech, unwanted lewdness, or stalking. The menu will
also include dummy options such as “I did not like the user” to prevent useless reports.

30

Server Meetup Search Activity Diagram

For creating matches, the server will send a list of ranked meetups that a user could match with
to a user who sends “a start searching request” to the server. This will pull the user’s GPS data
and status, to be used in the searching process. The server also adds that user to the list of
users looking for a meetup. If a user cancels searching for a meetup, the user will be removed
from the list of users looking for a meetup.

When users change the list of users they are willing to match with, the server checks if two
users are now willing to match with each other. If so, confirmation notifications are sent to each
user. The server waits for both users to accept or decline. It should also timeout if the a user
does not respond. If both users/meetups accept, then they are added to one meetup and are
removed from searching for a meetup. If a user declines, the other user is sent a decline
notification.

31

View Meetup History Activity Diagram

The app displays a list of previous meetups and the user can choose a meetup to further
inspect. From there, the user can view the profile of anyone user who participated in the group.
Ideally, we will provide a feature to provide feedback on the group that will assist in our
matching algorithm. If we cannot implement the feedback in a way that will tangibly affect our
algorithm, then this feedback feature will not be implemented.

32

View Profile Activity Diagram

The app displays the profile of the viewed user either from a cache or from pulling the data from
the server. The user from there can toggle whether the they want to share contact information
with the viewed user, as well as magnify parts of the profile. If both users toggle that they desire
to share contact information with each other, then contact information is displayed instead of the
share toggle. A potential feature is the implementation of reporting and blocking of users directly
into this screen. Blocking would be implemented before reporting.

33

VII. Sequence Diagrams

Create User Diagram (App)

In this sequence, a user will attempt to create his or her profile. They will pass a username, first
name, last name, birthdate, and email into the server. The server responds with a JSON
containing data about the success or failure of the creation of the account. Should it succeed,
the user will be notified, and they will be able to log in with this information provided. Should it
fail, either due to the username or email being taken, or potentially both, the user will be notified
of this as well. They will need to reattempt the sequence if the creation fails.

34

Handle Create User Diagram (Server)

When the user sends an account creation request to server, the server checks if the supplied
username or password is already in use by another account that is existing and validated. If the
username and email are not taken, the server sends an email to the supplied email address.
This email contains a link that the user must click to validate their email address. The server
then sends back to the app the appropriate response message depending on whether the
username was taken, the email was taken, or if account creation succeeded.

35

Handle Verify User Diagram (Server)

When the user clicks the link to verify their email address, the server will receive a request to
verify the account the link belongs to. Using the user key provided in the link, the server will
retrieve the user model in the database corresponding to the key. If the user is already verified,
the HTML the server responds with indicates this. Otherwise, the server checks if the verification
link has expired. If it has expired, the HTML the server responds with indicates this. If the link
has not expired, the verified property of the user is set to true. The time when the verification
was sent is reset to the current time as well. This will allow the user to login immediately (see
Handle Login Check Diagram (Server)). The HTML the server responds with will indicate a
successful email validation.

36

Login User Diagram (App)

This sequence diagram involves a user attempting to log-in to the application. The user will first
invoke the attemptLogin() method, and will pass a username or an email address. The server
will then check to see if that username or email address exists in the server. The server will
respond with a JSON containing data about the success or failure of the login attempt. If this
attempt succeeds, the app will request to see if the link has been clicked every, at the moment,
10 seconds, although this time window could be subject to change. Once the link has been
clicked, the user will be allowed to log in. Should the JSON contain failure data, the reason for
the failure will be displayed, whether it be the username or email being non-existent.
Additionally, should the user’s login link expire, the user will be notified of that upon clicking the
link, and will need to re-attempt the entire login process to acquire a new link.

This method of logging in may seem inefficient, but it was chosen due to the infrequency
of having to log into the application. Users may stay logged in for months, or even years, without
having to re-enter their passwords. This creates a very real possibility of the user having to
recover their account, should the infrequently used password be forgotten. This method of
logging in does present some challenges. It is possible that a user who does not own an
account to attempt a login at the same time as a real user. In this case, the user would receive
two emails, with different verification links. Since these links are device bound, clicking the
wrong link could result in an unauthorized party gaining access to your account. To minimize
this, we plan to include certain device data in the email, to ensure that users have access to

37

enough information to verify their logins. Additionally, due to the infrequency of login attempts
and the short lived length of the verification links, this scenario would rarely, if ever, occur.

Handle Login User Diagram (Server)

When the user wants to log in, an email is sent to their email address to confirm they want to log
in using their device. The server first validates that a user exists with either the username or
email address that the user has provided to log in. If an account exists, then a login email is sent
to the email address of the user. Otherwise the server responds with a message indicating no
user exists with the specified username or email.

38

Handle Verify User Login Diagram (Server)

When the user clicks the link to verify their email when logging in, the link will send them to a
web page that displays whether the user has been logged in or not. If the login link has not been
used yet, the verification time of the user is reset to the current time. The HTML displays
whether login was successful or if the link was used previously.

39

Handle Check Login Verified Diagram (Server)

After the user has attempted to log in, the app sends periodic messages to the server checking
if the email link has been clicked and the user has been logged in. The server receives this
message and retrieves the user model associated with it from the database. If the clicked the
link, the verification time will be recent. If the verification time is within a threshold from now
(threshold set at one minute for now), the the login is confirmed and the user receives their user
key; otherwise, the login cannot be confirmed.

40

View Profile Diagram (App)

This sequence diagram is for viewing the profile of another user. This is a fairly nonlinear
sequence diagram because there is no guarantee that any action should occur before any other
action. Once the user is viewing another user’s profile, the viewProfileActivity class displays
buttons to request the other user as a friend, block the other user, and magnify the profile
image, as well as displaying the other user’s description and interests with no associated
interactions. The sequence diagram consists of a large alt block detailing the sequences
associated with interacting with each of the buttons described above. If the user tries to request
or block the other user, a ServerRequest is used to notify the server to appropriately handle the
communication between users. Magnifying the profile image occurs locally and does not involve
any classes besides the viewProfileActivity.

41

Edit Profile Diagram (App)

42

This sequence diagram is for editing a user’s profile. The editProfileActivity class inherits from
viewProfileActivity because of the similarities of the actions, although the sequence diagram is
fairly different. The editProfileActivity will display a user’s profile with the option to edit the photo,
description, or interests visible to other users. The sequence diagram consists of a large alt
block each with nested alt blocks to represent that path from choosing one of these options to
completing a change or cancelling it. Additionally, editInterest has functionality to add and
remove interests, rather than editing a single object like editDescription or editPhoto.

Handle View Profile Diagram (Server)

When the user issues a request to retrieve the contents of a user account, the server simply
looks for the user with the specified username, and formats the data in a JSON format that can
be returned to the app. If the user cannot be found, the response to the app will indicate this.

43

Handle Edit Profile Diagram (Server)

When the user edits their profile, the user issues a request to the server with the key of the user,
the content to be edited, and the contents of the edit. The server retrieves the data of the user
from the datastore using the key of the user. The property specified in the request is then set to
the newly edited contents and the datastore is updated with this information. The server then
responds to the app indicating the edit was a success.

44

View Blocklist Diagram (App)

A user will invoke the viewBlockList() method in AccountManagement to start this sequence.
Once viewing the list, the user will have two options, the first is to add a new user to the list,
which will be placed on the server to prevent matching blocked users with their blockers. The
second is to remove a user from the block list, which will result in a server request to remove
that blocked user from the requester’s block list. The server, as usual, handles most of the
actual difficult tasks.

45

Handle View Blocklist Diagram (Server)

When the user wants to view their block list, the server retrieves the user’s data from the
database through the use of the user key provided when the user logged in. The block list
containing usernames of blocked users is returned back to the app.

46

Handle Edit Blocklist Diagram (Server)

When the user edits their block list by adding or removing a user from the list, the app makes a
request to the server to edit the list. The server retrieves the block list of the user by retrieving
the data of the user from the datastore using the user key provided in the request. The server
also attempts to find the user of the specified username to block or unblock. If the server cannot
find this user, the response to the app indicates this. Otherwise, the user is either added or
removed from the list depending on which operation the request indicates.

47

Handle Toggle Friend Status (Server)

When the user toggles whether they would like to share their phone number with the another
user, the app issues a request to the server detailing this. The server receives the request, the
server retrieves the data associated with the current user and the other user. If the user toggled
the status to “willing to be friends with” then the other user is added to the current user’s
pending friends list. If the status is toggled otherwise, the other user will be removed from the
pending user list. If both users have each other in their pending user list, they will remove each
other from their pending users lists and add each other to their confirmed users list. Confirmed
users are friends through the app and their phone number can be shared.

48

Handle Get Friends Diagram (Server)

When the user requests to view their friends list, the app issues a request to the server with all
the phone numbers in the user’s phone. The server attempts to find a user for each phone
number. For all the phone numbers associated a user account, the usernames of those profiles
are aggregated into a list. The server also retrieves the usernames of all the users that the user
has become friends but not yet received the friend confirmation. These usernames will later be
added to the user’s phone as contacts

49

Meetup Search Start/Stop/Update (App)

This sequence diagram is relatively straightforward, but contains many paths. It has two
alternate run patterns, depending on whether or not the user has requested to stop searching.
For simplicities sake, the second part of the diagram will be covered first. The user initiates the
search process on the main screen, and invokes the startSearching() method. A request is then
made by the SearchingService to create a ping request, which is passed to the ServerRequest
class. The ServerRequest class handles the creation of all requests, and it sends a request to
add the user to the table of all active users. It then enters a loop that will repeat every 30
seconds unless, in which the server sends a request to the server for all active searching users
within a specified radius. The server generates this data, and then replies to the request,
sending back an object with all the searching users as well as their match compatibility. This
thread then sleeps for 30 seconds, although it can be woken by the user invoking
stopSearching(). This will set the userSearching flag to false, and send a wakeup call to the
thread. When the thread attempts to loop once more, it will check the flag and see that it is

50

false, ending it’s searching attempts and quitting the search sequence. The user will additionally
be removed from the list of searching users.

Handle Meetup Search Start/Stop (Server)

When a user desires to start searching for a person or meetup to join, the server creates a new
search entity for the user and places it into the datastore. When the user wants to stop
searching, the search entity that was created when they started searching is removed from the
datastore.

51

Handle Meetup Search Update (Server)

When the app is searching for a meetup or user to match with, the app constantly pings the
server for matching updates. The server receives updates from the server of who the user is
willing to match with. The server sets the location of the entity to the location of the user that
issued the update request. It then retrieves all the other entities searching nearby, sorts them by
affinity to the interests of the entity and returns the list of other searching entities. This sequence
also handles if two entities indicate that they are willing to match with each other. When two
users indicate this, they will both be notified that they can match with each other. If both confirm
that they want to join the other, then their SearchEntityModels will be removed from the
datastore and a meetup will be formed of the combination of those two entities.

52

Start Meetup (App)

In this sequence, a meetup is first being made. A meetup entry will be made with the
profiles of the matched users, and then placed onto the database, along with a list of the users.
This second list will only ever be added to, and will be used for profile history.

53

Handle Start/Stop Meetup (Server)

When a user forms a meetup without searching for matches, the app will send a request to the
server indicating the creation of a meetup. When a user leaves the meetup, the key of the user
that was stored in the meetup will be removed from the current users list and added to the
former users list. This will allow the app to keep track of meetups and members.

54

Leave Meetup (App)

In this sequence, a user leaves a meetup they are currently in. A request will be made to the
server to remove the user from the meetup. The server will handle the removal of the user, and
return a Meetup Entry. This Meetup Entry consists of all previous users in the meetup, which is
stored separately than the list of active users. The Meetup Entry will then be placed on the
phone or device’s local database, as part of the user’s meetup history.

55

View Meetup History (App)

The View Meetup History sequence has minimized contact with the server, due to the method
we have chosen to store meetups, outlined in Leave Meetup (app). The LocalDatabase will
return a list of past meetups, and display them. A user will be able to magnify a meetup to see
more detail about it, and view user’s profiles that were part of the meetup. The View Profile
sequence takes place at this time, and this is the only point in which this sequence has server
contact.

56

Handle Contact Developers Diagram (Server)

When the user desires to send a message to the developers of the app, the app sends the user
key and the message to the server. The server receives this request and creates a new
developer message that is stored in the datastore. The server then responds indicating the
request has been successfully sent.

Contact Developers Diagram (App)

An extremely simple sequence; the user will invoke the sendContactRequest() method with a
parameter string, feedback, which contains developer feedback. This will then be placed on the
server using server requests, for the developers to look at whenever they wish.

57

Afterword
Some of the recommended changes to the Use Case diagrams and the Activity

diagrams cannot actually be made, due to the limitations of Visual Paradigm. For the most part,
these limitations are limited to not being able to send an activity to a line of another activity, but
being forced to send an activity to another activity. Thus, while we appreciate and acknowledge
the feedback provided, we are genuinely unable to act on a few of the recommendations without
converting our entire suite of diagrams into a different program. Additionally, our Use Case and
Activity diagrams both include many potential features. Should these not make it to the final
release, the diagrams will be edited. As such, our sequence diagrams reflect the sequences of
required features, while our activity and use case reflect more possibilities that, should they be
implemented, will receive sequence diagrams if necessary.

58

